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How does the human brain work?



functional Magnetic Resonance Imaging (fMRI)




Functional magnetic resonance
imaging (ftMRI) data

TR = Time of repetition
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Three interesting problems

fMRI to Stimulus Stimulus to fMRI fMRI to MR
(decoding) (encoding)
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A coherent multi-view framework for all three problems

View 1: (X of

Subject 1 ({3 ,\/,‘,%y

View 2: / / = - < > :| shared features
Subject 2 v ,‘/”9

View 3:
Stimulus




Outline

A Shared Response Model (SRM)
|. SRM on Neuroimaging Data
I|. Discussions and Extensions of SRM

V. Conclusion
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Part I: A Shared Response Model



From a multi-view perspective
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From a multi-view perspective

time

voxels

Subject 1

time

voxels

Subject 2

fMRI data matrix




From a multi-view perspective
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From a multi-view perspective

time 4 subject specific functional
w basis is the key
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Data collected while subjects receiving stimulus

Temporally synchronized naturalistic stimuli
1. Sample a wide range of response from the subject
2. Use time as anchor for learning shared response

sherlock raider forrest audiobook
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voxels

time

fMRI data

Factor Model

features
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fMRI response as linear combination of
functional basis

time features time
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Learning what is shared across subjects
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fMRI data as linear combination of subject
specific basis

time features time

subject specific shared
basis features

voxels
features

subjects x voxels

IR

fMRI data



Shared Response Model in one figure
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A shared visual/audio/
task stimulus
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A generative mode|




A generative mode|
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A generative mode|
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A generative mode|

_
T~
/
-

subject specific
functional
basis




Shared Response Model (SRM) is a latent
variable model

dls d
._
St ™~ N(Oa ES)
xit|3t NN(WzSt+Mzapz2[) Wi, Wiy pi
Wi W; =1 B
W, not square m

St shared elicited response at time t Z;t observations of subject i at time t
W, functional basis for subject | p: noise level for subject i's data

« Feature identification with dimensionality reduction

« (Constrained EM algorithm
[P.-H. Chen et al., NIPS , 2015]



Constrained EM algorithm

E-step :

Esz[st) = (WE)'(WEWT + )z — p),
ES|$[StStZ;1] — Vars|:r[st] + Es|m[st]Es|w[St]T
=%, - SIWITWEWT +0) ' W, + Egjz[st]Eg)[se]”

M-step :

W = 13, w
WY = A (AT Ai) 712, A = 5 (20 (@i — i) Egja[se] ),
2new . Zt (”mzt . ew||2 2(37% new)TwneleS|m[St] (]Eslm[sts’.tl”])),

Enew — d Zt( slm[stst ])

* Learning W on Stiefel manifold



Shared features, subject specific functional
basis, and subject specific response

voxel space

X, X1
X, X,
fMRI subject shared

specific
data response response

feature space

Eg|x[S]

& distribution
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Part II: Shared Response Model on
Neuroimaging Data



Evaluation with various datasets

sherlock

Different MRl machines

Different institutes

Different subjects

Different preprocessing protocols
Different brain regions

Different data size

raider forrest audiobook

Forrest
Gump




SRM on fMRI

individual response

1. Generalize to new subject 2. Generalize to new stimulus 3. Decoupling shared and
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4. SRM with retinotopy 5. Searchlight SRM 6. Bridging shared space
and text semantic space
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A man, startling
awake, sweating in
his bed. A single
bed in the dullest,
plainest room. He
sits up, calming
himself, letting his
breathing return to
normal.




1. Generalize to new subject
2. Generalize to new stimulus

1. Generalize to new subject 2. Generalize to new stimulus
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Generalization to new subject
with time segment matching

Datasets
) Learning Subject Specific Bases . sherlock
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Generalization to new subject
with time segment matching

Datasets
Learning Subject Specific Bases
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Generalization to new subject
with time segment matching

AL T T T

raider, VT 794 Time Segment Matching
615 .641 TAL HEE PCA HEE HA

T B MNI ICA EEE SRM|

[sherlock, PMC]

.335]

.162

077

037 %
ICA HA SRM MNI PCA ICA HA SRM MNI PCA ICA HA SRM
k=50 v=500 k=50 k=50 k=50 v=1300 k=50 k=50 k=50 v=813 k=50

[P.-H. Chen et al., NIPS , 2015]



Generalization to new subject and distinct
stimulus with image classification

Learning Subject Specific Bases

Dataset
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Generalization to new subject and distinct
stimulus with image classification

| Imagé Stimulus Classification
.680

0.7} 633 [raider, VT] 637

.558

Accuracy
o
o

TAL Within PCA ICA HA SRM
Subject k=50 k=50 v=500 k=50

« Qutperforms within-subject classification

[P.-H. Chen et al., NIPS , 2015]



3. Decoupling shared and individual response

1. Generalize to new subject 2. Generalize to new stimulus 3. Decoupling shared and

4. SRM with retinotopy

individual response

NneSfories

6. Bridging shared space
and word embedding space

A man, startling
awake, sweating in
his bed. A single
bed in the dullest,
plainest room. He
sits up, calming
himself, letting his
breathing return to
normal.




Classifying mental states

40 subijects listening to narrated story
Separate 40 subjects into 2 groups

Two groups receive different prior contexts
Leading to different interpretations of the story
Predict prior context of a left-out subject

Dataset

audiobook

2




Classifying mental states

Group 1 Group 2 Group
prediction
shared within ndividual shared within ndividual accuracy
by all group by all group with SRM

[P.-H. Chen et al., NIPS , 2015]



Classifying mental states

Group 1 Group 2 Group
prediction
shared within ndividual shared within ndividual accuracy
by all group by all group with SRM
0.72+0.06

[P.-H. Chen et al., NIPS , 2015]



Classifying mental states

Group 1 Group 2 Group
prediction
shared within ndividual shared within ndividual accuracy
by all group by all group with SRM
0.72+0.06
0.54+0.06

L | | L | |

[P.-H. Chen et al., NIPS , 2015]



Classifying mental states

Group 1 Group 2 Group
prediction
shared within ndividual shared within ndividual accuracy
by all group by all group with SRM
0.72+0.06
0.54+0.06
0.70+0.04

[P.-H. Chen et al., NIPS , 2015]

0.82+0.04




4. SRM with retinotopy

1. Generalize to new subject 2. Generalize to new stimulus 3. Decoupling shared and

5. Searchlight SRM 6. Bridging shared space
and word embedding space
A man, startling
A F L awake, sweating in
g} $h his bed. A single
2 | bed in the dullest,
ol plainest room. He
il oeoc oo _ sits up, calming
- himself, letting his
s | s breathing return to
= = o normal.

individual response
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Mapping Visual Field Maps: Retinotopy




Original Phase Maps vs. SRM

Sanity check: (W_i*transformed_data_i)
Phase map comparison between original phase maps and phase maps derived from data
reconstructed in same subject post hyperalign. NOTE: original data was not masked and
includes more of cortex. Data threshold a p <.0001

[Work by Michael J. Arcaro]



Transformation between subjects

S| ->82

Subj| Subj2

Orig Transformed Transformed Orig

[Work by Michael J. Arcaro]



5. Searchlight SRM

1. Generalize to new subject 2. Generalize to new stimulus 3. Decoupling shared and

4. SRM with retinotopy 5. Searchlight SRM 6. Bridging shared space
and word embedding space

individual response

A man, startling
awake, sweating in
his bed. A single
bed in the dullest,
plainest room. He
sits up, calming
himself, letting his
breathing return to
normal.
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Searchlight SRM

» |ocalized analysis across the whole brain

For a searchlight

LAY

\

. | Analvsi statistics ]
/' SRM nalysis e.g. accuracy :
Statistics map
Brain image
)\ )
I f

Learning phase
(training data)

Testing phase
(testing data)
[Zhang and Chen et al., ArXiv , 2016]



MNI

SRM

Time segment matching with searchlight SRM

>0.15

. LT+ e e N
= N >
EVC

Adeinodoy

0.02

Accuracy map from time segment matching experiment (Sherlock)

[Zhang and Chen et al., ArXiv , 2016]



6. Bridging fMRI shared space and text
semantic space

6. Bridging fMRI shared
space and semantic space

A man, startling
awake, sweating in
his bed. A single
bed in the dullest,
plainest room. He
sits up, calming
himself, letting his
breathing return to
normal.




Bridging fMRI shared space and text semantic space

Training Phase Testing Phase:

fMRI to text text to MR

semantic vectors

l

Linear model:

_ Procrustes transform .
semantic vectors . R|dge regression semantic vectors

|
_
e

text

[Vodrahalli and Chen et al. 2016 arXiv]



Bridging shared space and word embedding space
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B Ranking

0.50

0.60

-Text to fMRI
081 0.88 | 0.84 0.87 091
Baseline Occipital Whole Dorsal Ventral Default Default
Lobe Brain Language Language Mode Mode
Network Network Network-B Network-A

[Vodrahalli and Chen et al. 2016 arXiv]



Part Il Discussions and Extensions of SRM



SRM on fMRI

individual response

1. Generalize to new subject 2. Generalize to new stimulus 3. Decoupling shared and
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How can SRM help?

What can SRM do?

« Multi-subject data driven de-noising
Aggregation of multi-subject data
Generalizable to new subject and new stimulus
Outperform within subject classification
Decoupling of shared and individual response

Can | use SRM on my data”?
* Temporally synchronized stimuli
- No problem!
* Non-temporally synchronized stimuli
- Might also work with preprocessing!



When should you consider using SRM?

1. | want to figure out what's shared/not shared in my multi-
view data (multi-subject, multi-modality, multi-region,
fMRI + stimulus, etc)

2. | have multi-view dataset, | want better prediction
accuracy!



A series of extensions of SRM

Semi-supervised SRM

mip (1 — @) Latign (¥) + aLsup (0;¢) + R (0)

[Turek et al. ICASSP 2017]

Kernelized SRM

min||®; — ®; 4,52

Stzi;szfL = Ii.

Independent factor SRM

Algorithm 1: Shared Response ICA (SR-ICA)

> ()

is pseudo-inverse;

o

i
WP « (E{X:g(S)} - E{Xig'(S)}W;*")
WP — Wa(WrT W)z,

[Zhang et al. ArXiv 2016]

Gaussian Process SRM

sri ~ GP(0,Kq,(t, 1)),
x;ntlst ~ N(Wmst + ,u'mvp?nj)’
st WEW,, =1,

[srl...sri...er]T:[sl...st...sT],

Scaling up to
thousand subjects

200
,; 00

[Anderson et al. IEEE Bigdata 2016]

And more!



Code ready to use!

https://github.com/IntelPNI/brainiak

« Simple setting, one line code to fit a model to your data



Open source software contribution

£ IntelPNI / brainiak @©MWatch~ 16 JUnstar 37  YFork 35
<> Code Issues 25 Pull requests 3 Projects 0 Wiki Insights ~

Brain Imaging Analysis Kit http://brainiak.org

neuroscience frori machine-learning distributed
D 244 commits ¥ 1 branch © 7 releases 42 16 contributors sz Apache-2.0
__________________________________________________________________________________________B
L PyMVPA / PyMVPA @Watch~ 26 4 Star 181  Y¥Fork 89
<> Code ! lssues 78 | Pull requests 17 Projects 0 Insights ~

MultiVariate Pattern Analysis in Python http://www.pymvpa.org

D 9,304 commits ¥ 10 branches © 88 releases 42 28 contributors
|

£l cameronphchen / SRM @Watch 3 KStar 3  YFork 5
<> Code ! Issues 0 Il Pull requests 0 Projects 0 Insights ~
Shared Response Model (SRM) of NIPS 2015

D 56 commits ¥ 1 branch © 1 release 22 1 contributor
.

] cameronphchen / SRM_tutorial @Watch 1 &Star 0  YFork 0
<> Code ') Issues 0 Il Pull requests 0 Projects 0 Insights ~
No description, website, or topics provided.

D 7 commits ¥ 1 branch © 0 releases 22 1 contributor s MIT
e e—



Conclusion



Conclusion




Conclusion




Conclusion

Proposed a multi-view learning framework

Developed SRM and many other models from the framework

Demonstrated these models on real tMRI in various settings



How can these help us learn more about the brain 7

Increase statistical power from aggregated data



How can these help us learn more about the brain 7

Increase statistical power from aggregated data

| earn more about the distribution of information in the brain



How can these help us learn more about the brain 7

Increase statistical power from aggregated data

| earn more about the distribution of information in the brain

Open up new possibilities for analyzing neuroimaging data



The Spirit Carries On!
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Back up



A coherent multi-view framework for all three problems

underlying representation as a vector

View 1: View 2: View 3:
Subject 1 Subject 2 Subject 3



What is multi-view learning”

« Exist an unknown underlying representation, and

each view is a realization of it

« Multi-view learning models estimate

transtormations between views and representation



Questions to think about before using
SRM on fMRI data

What are the views?

What is the hypothesis that we are testing?

Which space are we analyzing in”



Multi-view in TMRI data can be of various forms

Multi-subject Stimulus+fMRI
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and more!



Conventional ML models disregard variability across views

Tailarach Cortical Surface

4 Co-Planar Stereotaxic Atlas
=4 of the Human Brain




Challenges

Tailarach Cortical Surface

.__§

1 Co-Planar Stereotaxic Atlas

-8




Conventional ML models disregard variability across views

Tailarach Cortical Surface

4 Co-Planar Stereotaxic Atlas
=4 of the Human Brain




The Need for Multi-view Learning in Neuroimaging

Generalizing findings across subjects

Aggregating data for statistical power

Mapping data between views



What is multi-view learning?

underlying representation as a vector

"black and white dog
jumps over bar’

view1: image view?2: text



Neuroimaging measures brain activity



Multi-view Representation

Image Caption Generation

Learning Examples

Multi-Language Translation

Training

Google Neural |
Machine Translation

English

= l English
‘man in black shirt is playing ‘construction worker in orange
guitar safety vest is working on road.”
| Japanese
| Korean

Japanese

"girl in pink dress is jumping in "black and white dog jumps over
air’ bar’

Korean

source: Karpathy and Li. "Deep visual-semantic alignments for generating image descriptions." CVPR 2015.
https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html



The Need for Multi-view Learning in Neuroimaging



Example: Multi-Language Translation as Multi-view
Representation Learning

Training
English Google Neural English
Machine Translation
\
Japanese | Japanese
Korean Korean

source : https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html






Subjl

Subj2

Subj3

Subj4

Subj3-> Subj4-> !

[Work by Michael J. Arcaro]



A generative mode|
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A generative mode|
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Given data from training views,

Prediction:
can we predict the brain response of a test subject?

Classification:
given brain response from a test subject, can we
classity what's the stimulus?




Ditferentiating between groups

group classification

SQ?;elfj within group  individual accuracy with SRM
Group 1 - Group 2
- original data 0.72+0.06
(a) g;; subj 1 subjm subj 1 subjm k=3 0544006
1= .54+0.
shared response across all subjects
(b)g P R ——
- residual e 3l k=0 0792004
(c) % == =0 [ ky=100 V"
shared response within group shared response within group p— j:
in voxel space (k,) in voxel space (kj) | i 10
TR I A 1 I A 1 -— - j 1 =
I R .82+0.04
(d)% test train train test train train I | k2 =100 0.82£0.0
R
N T PCA £, =50 ICA I, —50 ' ' Group Classification
2 = 2= 2= =+ chance
BN SRMk, =100 N PCAk,—100 [HEEE ICA k, =100 Dataset: audiobook
0.9 | ori |naldata| atasel: audiobook |
7w SRM K, =200 W PCAK, =200 EEEE ICA k, =200 9 o822 ROI: DMN
’ .78.78 '
5

72 072 7272 .72.72
] .70.70 0

T

o
o)

20,7072 72.71.71 I

|

Accuracy
o
~

.55 5
.53.53 17 .53.53

o
(@)
T

0.5f= k=

0.4
orig. data k, =0



SRM with non-temporally synchronized dataset



SRM with non-temporally synchronized dataset

« Each observation is a noisy sample of the brain state

Subiject 1

State 2 State 1 State 3 State 1 State 4

t >

Subject 2

State 3 State 4 State 1 State 2




SRM with non-temporally synchronized dataset

Step 1: reordering

Subiject 1

State 1 State 2 State 3 State 4
t >

Subject 2

State 1 State 2 State 3 State 4




SRM with non-temporally synchronized dataset

Step 2: down sampling

Subiject 1
State 2 | State3 State4
t >
Subject 2
State 2 | State3 State4
t >

Step 3: fit SRM with preprocessed data




Quantitying dimensionality of shared response



Quantitying dimensionality of shared response

a Movie—movie b Movie—recall
0.7 y y 1 0.20 . . -
-— —0
0.6
0.15
> >
g 0.5 g
= =
8 04 8
< < 0.10
0.3
0.2 . 0.05 .
0 20 40 60 80 0 20 40 60 80
Number of dimensions Number of dimensions
[J. Chen et al., Nat. Neur., 2017]
1.0' T T . T T T T T T T T T T
0.9 |ra|der, VT| Time Segment Matching.
0.8 i
3 0.7 |
g 06 forrest, PT [sherlock, PMC]
(&)
0.4 ' 371 335 340 .350 .349]
0.3
0.2

10 50 100 500 10 50 100 500 1300 10 50 100 500 813
various values of k for SRM

[P.-H. Chen et al. NIPS, 2015]



Quantitying dimensionality of shared response

Time Segment Matching Experiment Accuracy Map, Dataset: audiobook

e P | :
0.02
125
Time Segment Matching Experiment k Map, Dataset: audiobook
oc
w

[H. Zhang et al. ArXiv, 2016]



accuracy

Amount of data required to train SRM

0.75
--- MLR
90 B8 SRM
’ -9 SS-SRM
> 0.65
QO
©
|-
= }
v
£ 0.60
0.55
. 500 1000 1500 2000

Alignment Samples

raider image category classification

time segment matching experiment, sherlock scene recall matching experiment, sherlock
T T T T T T T T
0.40 | E 0.14 | :
035 1 0.12 4
0.30 | - 010l |
0.25 | g >
@ 0.08 | q
0.20 | 4 3
o
© 0.06 [ .
0.15 | |
0.04 | .
0.10 | i
0.05 |- i 0.02 | i
0.00 ' ' L . 0.00 - L . .
0 200 400 600 800 1000 0 200 400 600 800 1000
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Amount of data required to train SRM

0.5 'forrgst i ‘ 0.40 ' sh('erlock , ' -
RM
- e . ’}_ 0.35 ] H k=50
0.4f -
! 0.30 - - i SRM nonprob
> [
e 0.3 IEEEEEEEEEEEE Ry HA
z 1 CITTT T gool | Hv=813
(v}
g 0.2} | oasf HHHHIHTHH ch
k=50
0.10+ g
0.1 1 ) 1 PCA
M 005;/1 T = . ] k=50
0.0 . s s -

2 4 6 8 10 12 14 16 "% 4 6 & 10 12 14

Number of subjects
Figure 3.11: Effect of the number of subjects used in SRM training on the classifi-
cation 18s time segments of a held out subject for three datasets and distinct ROIs.

Error bars: +1 stand. error.



A multi-subject convolutional autoencoder



Dispersion of cross-subject mapping makes it
hard to interpret the brain maps

activity

PMC mask (|\/|) 0 B B

o)A 80~ AL
., f’ \A—/ \ /e achty\-,

WB-SRM (M) 0.05 0.3

l"

S SNk SR 2o
F - G (2 N |

S8

Regularization
Searchlight analysis



A multi-subject convolutional autoencoder (CAE)

encoder decoder

, ¢ 4
1 convolution @1 across subjects 1 convolutlon 1 deconvolution 1

?/ @ : nonlinearity
5 /
F
-
K, ks
(D
AN ~ _
\ S ¢
\\ S~ - ,—" —————————— -r-b=ksl
-7 e B Err S AR ) cpsc s N i
-< P === ’C /
|~ \ 7 A
7])
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« Unified view of searchlight analysis and convolution operation
 Non-linear model for multi-subject fMRI data



Discovering information distribution in the brain

Time Segment Matching
Dataset: sherlock-movie Dataset: audiobook
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Demonstrating local information propagation with CAE
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Transfer Learning on tMRI Datasets

{2,3} {4}

M = {la 2)3}

M, = {2,3,4,5} M3 = {4,6}

Figure 1: A simple dataset graph. Nodes represent datasets, edges indicate the presence of shared subjects, the
edge labels indicate the set of indices of the shared subjects. M is the set of subject indices in dataset d.

Dataset  Type Samples = Num. Subjs 1
greeneyes [23] Audio 450 TRs 40
milky [24] Audio 297 TRs 18
vodka [24] Audio 297 TRs 18
schema [25] Audio 937 TRs 31
sherlock [26] Movie 1973 TRs 16
sherlock-recall [26] Recall 34 scenes 16

Table 1: Information on fMRI datasets. Each TR is 1.5 seconds. Figure 3: Structure of datasets as a graph.
Each scene is the averaged response when recalling the scene. Num. shared subjects labeled on edges



Time Segment Matching (ROIl: DMN)
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Figure 5: Experiment 1. Top: Results of time segment matching experiment on DMN (other ROIs in Supp.
Mat.). Chance accuracy: greeneyes: 0.005; sherlock: 0.001; vodka: 0.008; milky: 0.008. k selected based on
cross-validation. Bottom (left): An example of random partition of training and testing subjects. Available
observations are grey blocks, missing observations are white blocks. Testing subjects are completely left-out in
all datasets. Bottom (right): Scene recall matching on PMC. Each subject has data for 34 scenes on average,
but there are 50 possible scenes (classes), so the chance accuracy is 0.02. k selected based on cross-validation.



Learning a global linear mapping from training sub]ects

averaged k-dim.
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Figure 6: Experiment 2. Left: Learn linear transformation and perform scene classification. Right: fMRI data
to text embedding transformation classification accuracy. Results on other ROIs in Supp. Mat. Chance accuracy:
greeneyes:0.14; sherlock: 0.04. k selected based on cross-validation.



Add Shared Subjects BOZSGC' Dataset (ROI: DMN)

0.4
Prm.:Vodka Prm.:Milky
Sec.:GreenEyes Sec.:GreenEyes
>
G 0.3 °
© independent
8 subjects
£ 0.2
k=75 k=75 subjects| Secondary
0.1 T T T T T T T T T 0.1 T T T T T T T T
1 3 5 7 9 11 13 15 17 1 5 7 9 11 13 15

Number of shared subjects

Figure 8: Experiment 4. Left: Time segment matching accuracy on prm. dataset when using all independent
subjects and different number of shared subjects in sec. dataset. Chance accuracy and k same as experiment 1.
Error bar computed across subjects. Right: Definition of shared subjects and independent subjects.

Transfer Learning to an Unseen Prm. Dataset (ROl: DMN)
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Figure 7: Experiment 3. Time segment
matching accuracy on prm. dataset using
subject specific basis learned from 1 or 2
secondary datasets. Results on other ROIs
in Supp. Mat. Chance accuracy: greeneyes:
0.0025; milky: 0.004; sherlock" 0.0005. k
same as experiment 1. Error bar computed
Prm. do across subjects.
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Jupyter notebook examples

Need jupyter notebook and brainiak properly installed with python 3

git clone https://github.com/cameronphchen/SRM_tutorial.git
cd SRM_tutorial

chmod +x download-data.sh

Jdownload-data.sh

jupyter notebook



Code ready to use on your dataset

https://github.com/IntelPNI/brainiak

« Simple setting, one line command to fit SRM on your data
« Handles different numbers of voxels across subjects/views



Sl A

SRM on fMRI

Generalize to new stimulus

Generalize to new subject

Decoupling shared and individual response

SRM with retinotopy

Searchlight SRM

Bridging shared space and word embedding space



SRM on fMRI



Why searchlights?

Structured Sparsity
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Semi-supervised SRM

Dataset | Experiment MLR SRM | SS-SRM
raider Image category | 56.25% | 65.53% 68.57%
sherlock | Scene recall 4.28% 5.31% 6.12%

Table 1. Comparison of average accuracy for brain decoding
experiments.

0.75

- MLR
m—a SRM
'|@—e SS-SRM

Accuracy

0 500 1000 1500 2000
Alignment Samples

Fig. 1. Average accuracy as a function of the number of align-
ment samples.



