Shared Response Model Tutorial

What works? How can it help you?

Po-Hsuan (Cameron) Chen and Hejia Zhang

@ Hasson Lab Feb 15, 2017

PRINCETON UNIVERSITY

Outline

- SRM Theory
- SRM on fMRI
- Hands-on SRM with Brainlak

SRM Theory

Multi-view representation learning

What is multi-view learning and why is it important?

- Exist an unknown underlying distribution, each view is a realization of it
- Conventional ML models concatenate multiple views into one single view
- Successful multi-view learning leads to better utilization of data with better performance

Motivation

Modern fMRI studies of human brain use data from multiple subjects

- scientific reason
- statistical reason

How can we aggregate fMRI data from multiple subjects?

Challenge

Inter-subject variability in anatomical structure and functional topographies

Given data from training subjects,

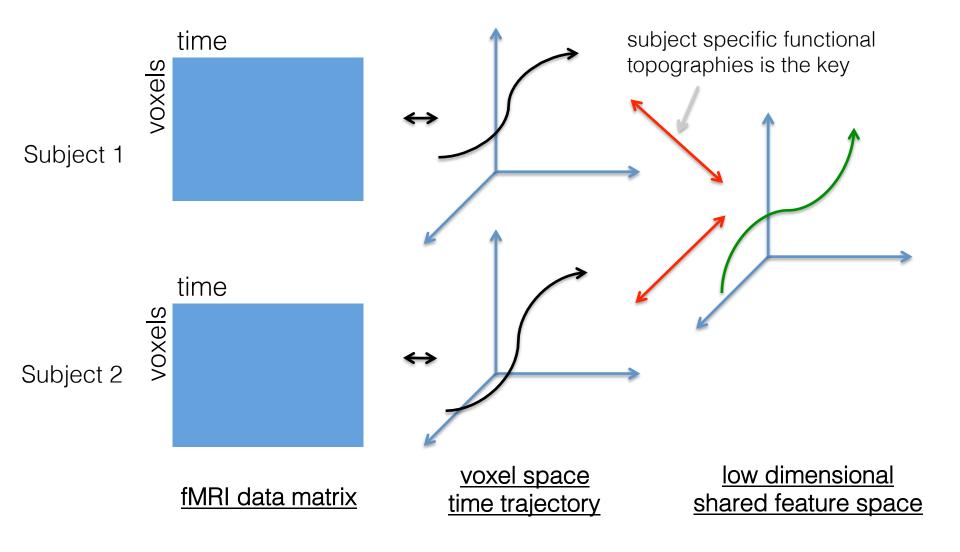
Prediction:

can we predict the brain response of a test subject?

Classification:

given brain response from a test subject, can we classify what's the stimulus?

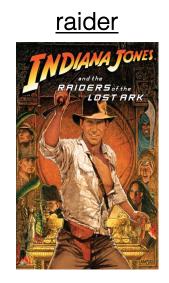
Shared latent temporal response + subject specific functional topographies



Data collected while subjects receiving stimulus

- Temporally synchronized naturalistic stimuli
- 1. Sample a wide range of response from the subject
- 2. Use time as anchor for learning shared response

movie watching



movie and image watching <u>forrest</u> Forrest Gump

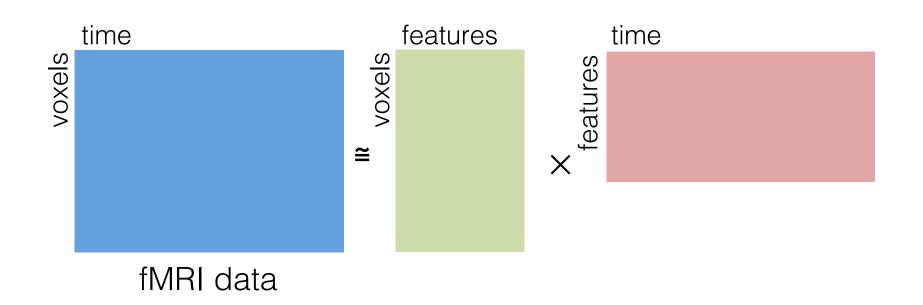
auditory film

listening

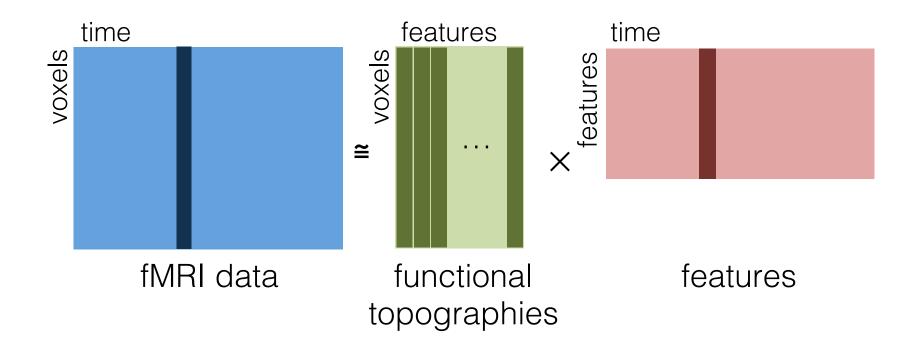
audiobook

audio book listening

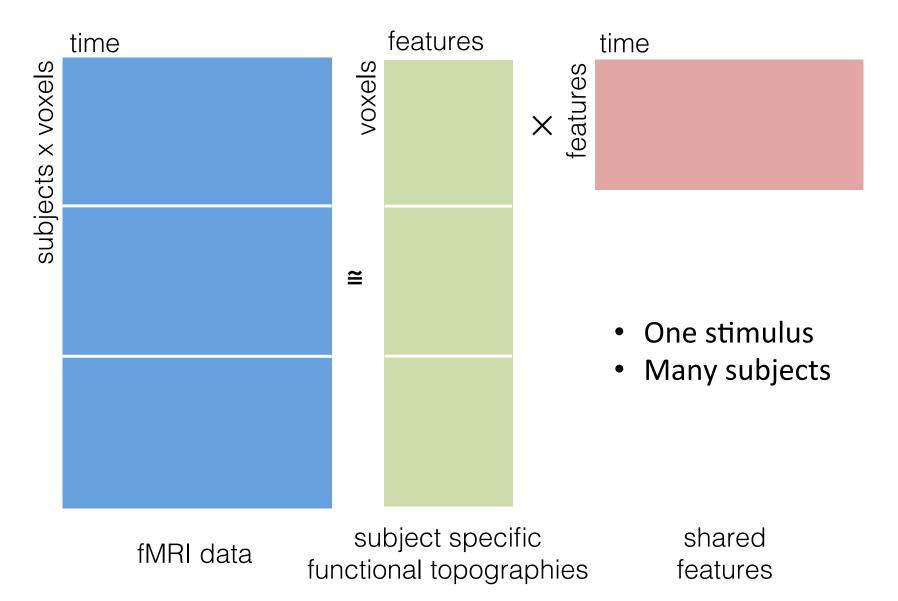
Factor Model



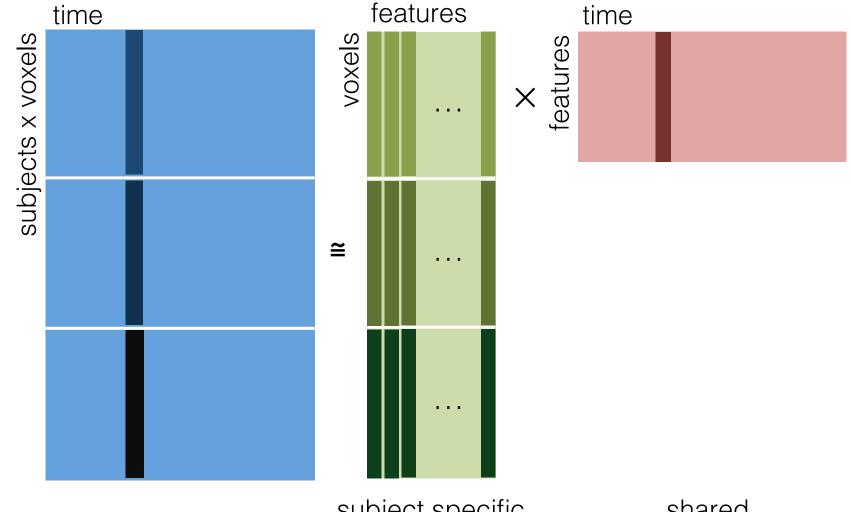
fMRI response as linear combination of functional topographies



Learning what is shared across subjects



fMRI data as linear combination of subject specific functional topographies

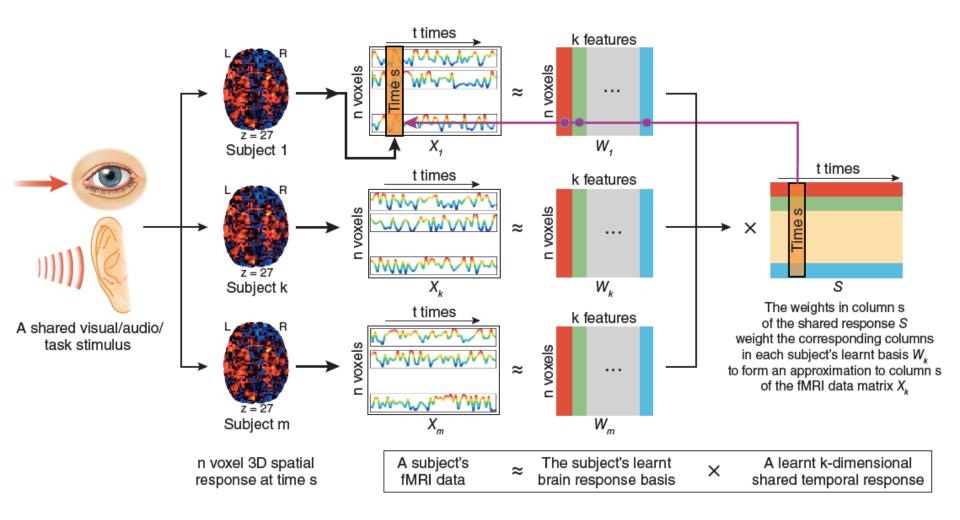


fMRI data

subject specific functional topographies

shared features

Shared Response Model in one figure

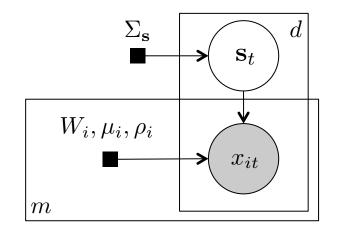


[J. Cohen et al., Nat. Neur., 2017]

Shared Response Model (SRM) is a latent variable model

$$s_t \sim \mathcal{N}(0, \Sigma_s)$$

 $x_{it} | s_t \sim \mathcal{N}(W_i s_t + \mu_i, \rho_i^2 I)$
 $W_i^T W_i = I$
 $W_i \text{ not square}$

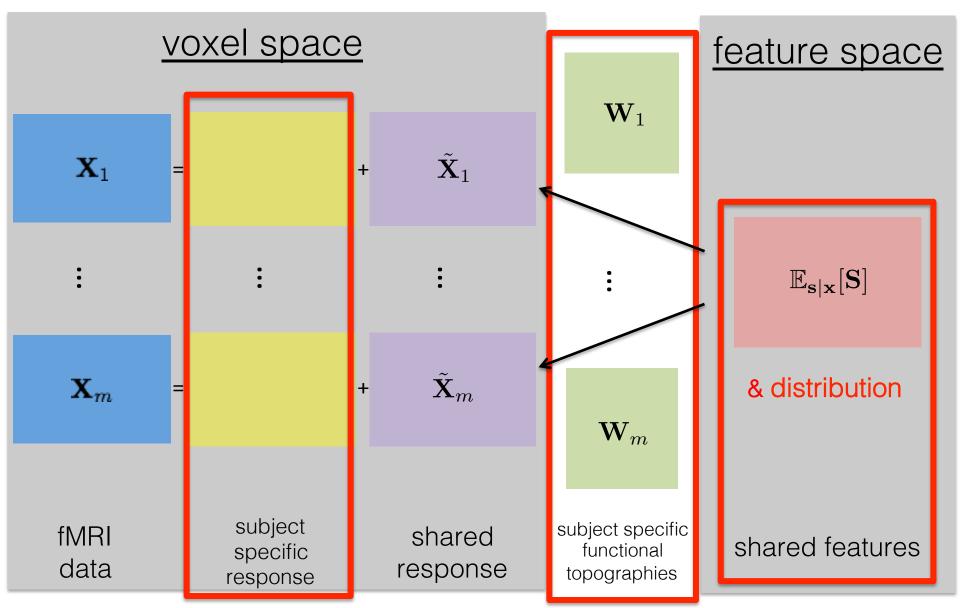


 s_t shared elicited response at time t x_{it} observations of subject i at time t W_i functional topographies for subject i ρ_i^2 noise level for subject i's data

- Feature identification with dimensionality reduction
- Constrained EM algorithm

[P.-H. Chen et al., NIPS , 2015]

Shared features, subject specific functional topographies, and subject specific response



SRM on fMRI

Evaluation with various datasets

- Different MRI machines
- Different institutes
- Different subjects
- Different preprocessing protocols
- Different brain regions
- Different data size



audiobook

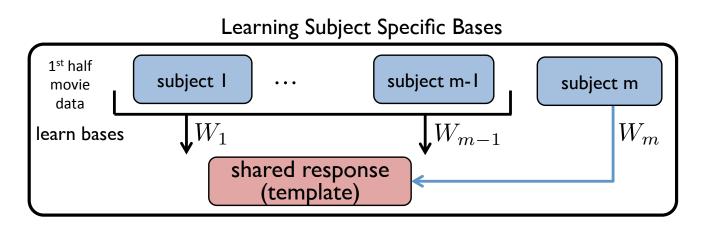
SRM on fMRI

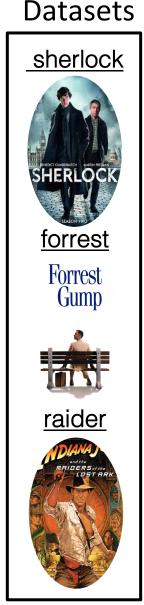
- Generalize to new stimulus
- Generalize to new subject
- Decoupling shared and individual response
- SRM with non-temporally synchronized stimulus
- SRM with retinotopy
- Quantifying dimensionality of shared response
- Searchlight SRM

SRM on fMRI

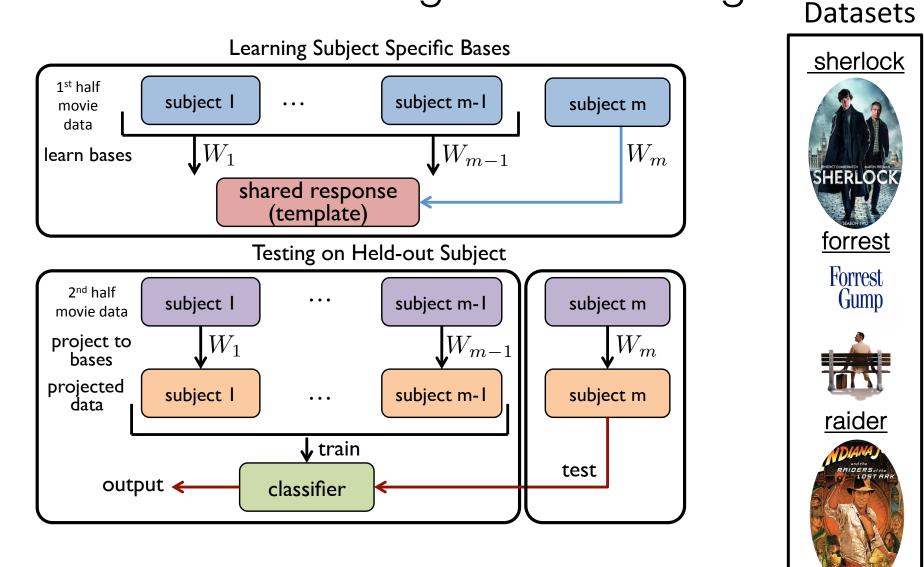
- Generalize to new stimulus
- Generalize to new subject
- Decoupling shared and individual response
- SRM with non-temporally synchronized stimulus
- SRM with retinotopy
- Quantifying dimensionality of shared response
- Searchlight SRM

Generalization to new subject with time segment matching

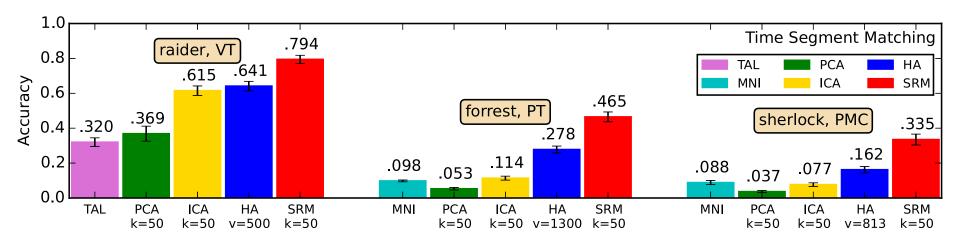




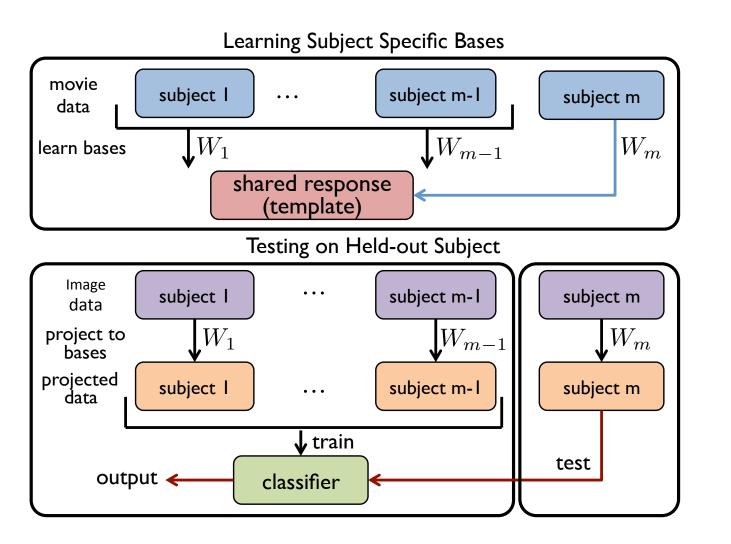
Generalization to new subject with time segment matching



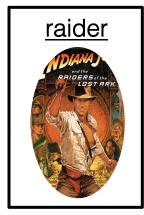
Generalization to new subject with time segment matching



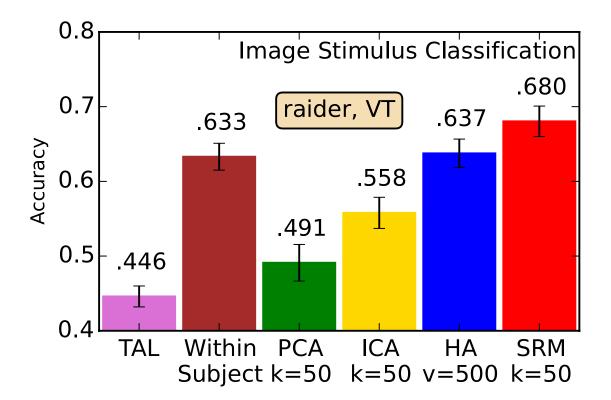
Generalization to new subject and distinct stimulus with image classification



Dataset



Generalization to new subject and distinct stimulus with image classification

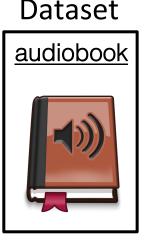


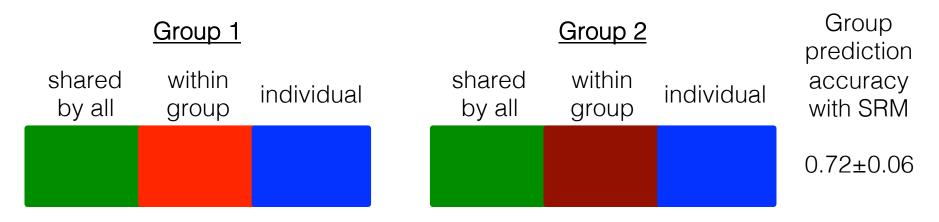
Outperforms within-subject classification

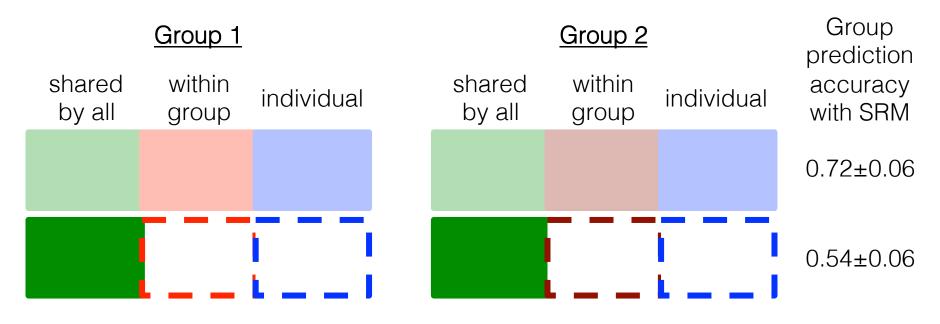
SRM on fMRI

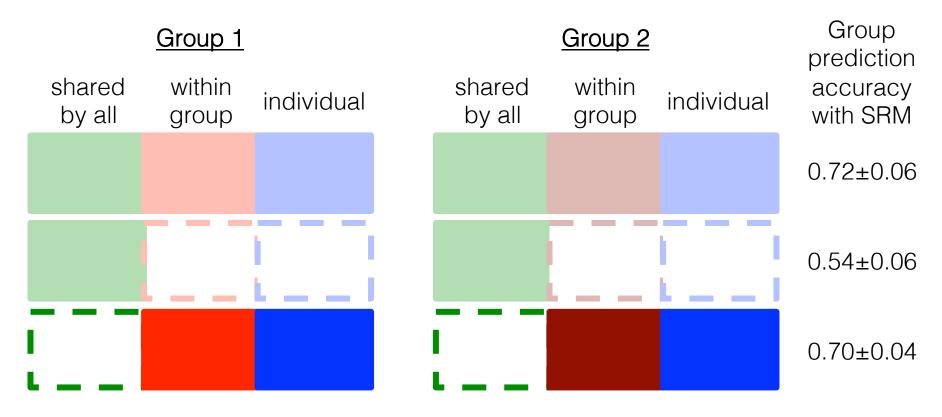
- Generalize to new stimulus
- Generalize to new subject
- Decoupling shared and individual response
- SRM with non-temporally synchronized stimulus
- SRM with retinotopy
- Quantifying dimensionality of shared response
- Searchlight SRM

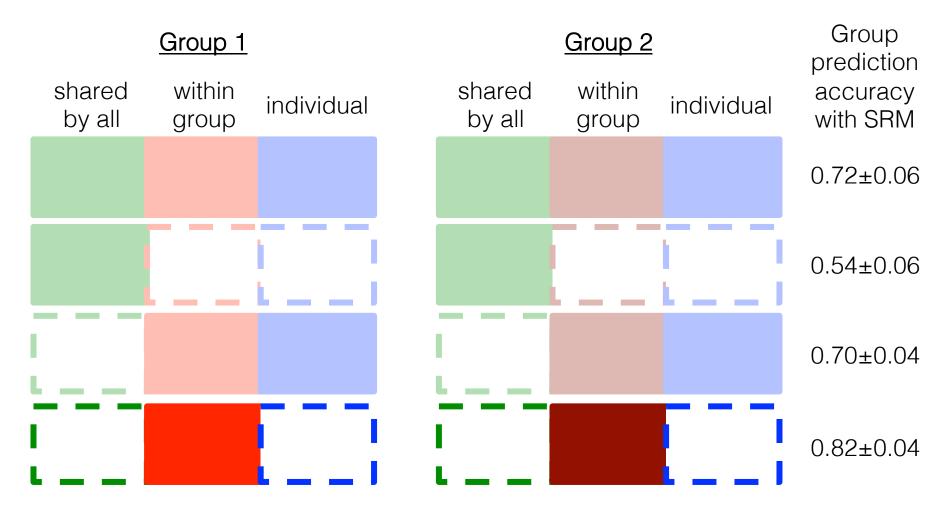
- 40 subjects listening to narrated story
- Separate 40 subjects into 2 groups
- Two groups receive different prior contexts
- Leading to different interpretations of the story
- Predict prior context of a left-out subject











SRM on fMRI

- Generalize to new stimulus
- Generalize to new subject
- Decoupling shared and individual response
- SRM with non-temporally synchronized stimulus
- SRM with retinotopy
- Quantifying dimensionality of shared response
- Searchlight SRM

Stimuli

Young Face Young House

Old Face Young House

Old Face Old House

Young Face Old House

 Each image shows a young or old face and a young or old house

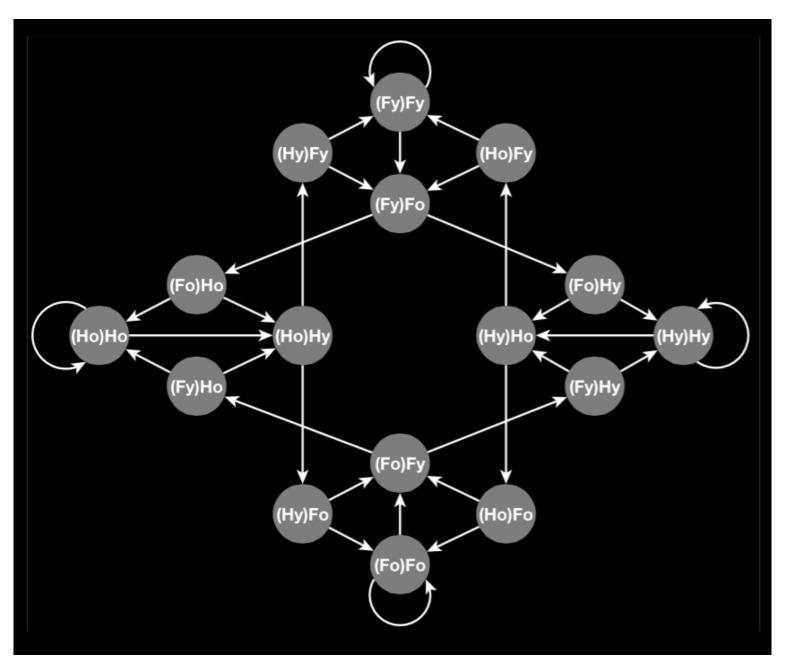
[Slide from Nicolas Schuck]

Task

If the age changes, the switch attention in next trial, otherwise stay



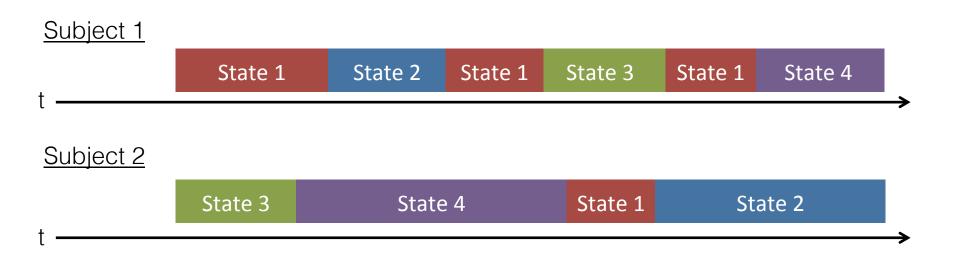
[Slide from Nicolas Schuck]



[Slide from Nicolas Schuck]

SRM with non-temporally synchronized dataset

• Each observation is a noisy sample of the brain state

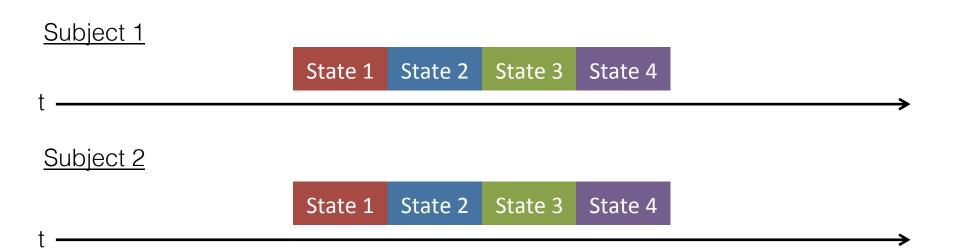


SRM with non-temporally synchronized dataset

Step 1: reordering

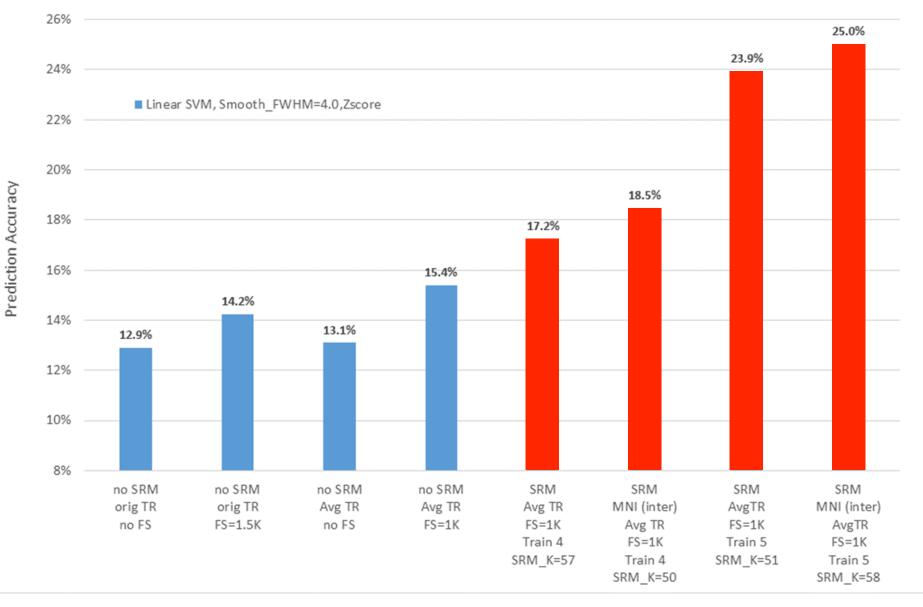
SRM with non-temporally synchronized dataset

Step 2: down sampling



Step 3: fit SRM with preprocessed data

SRM for State Space 16-way Classification

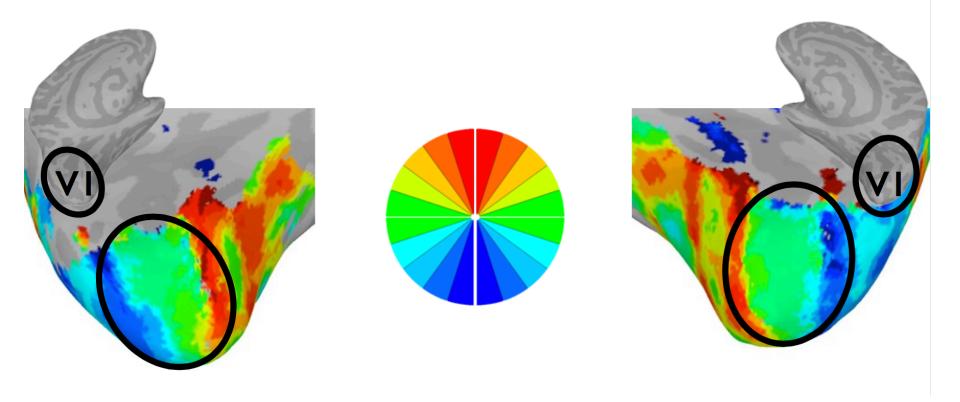


[Work by Ivy Zhu]

SRM on fMRI

- Generalize to new stimulus
- Generalize to new subject
- Decoupling shared and individual response
- SRM with non-temporally synchronized stimulus
- SRM with retinotopy
- Quantifying dimensionality of shared response
- Searchlight SRM

Mapping Visual Field Maps: Retinotopy



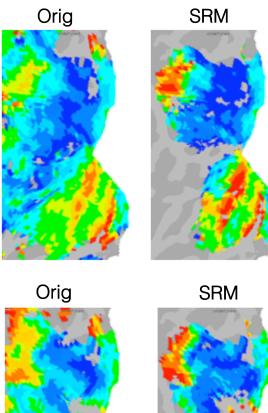
[Work by Michael J. Arcaro]

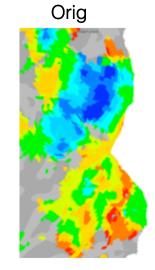
Original Phase Maps vs. SRM

Sanity check:

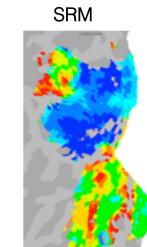
(W_i*transformed_data_i)

Phase map comparison between original phase maps and phase maps derived from data reconstructed in same subject post hyperalign. NOTE: original data was not masked and includes more of cortex. Data threshold a p < .0001



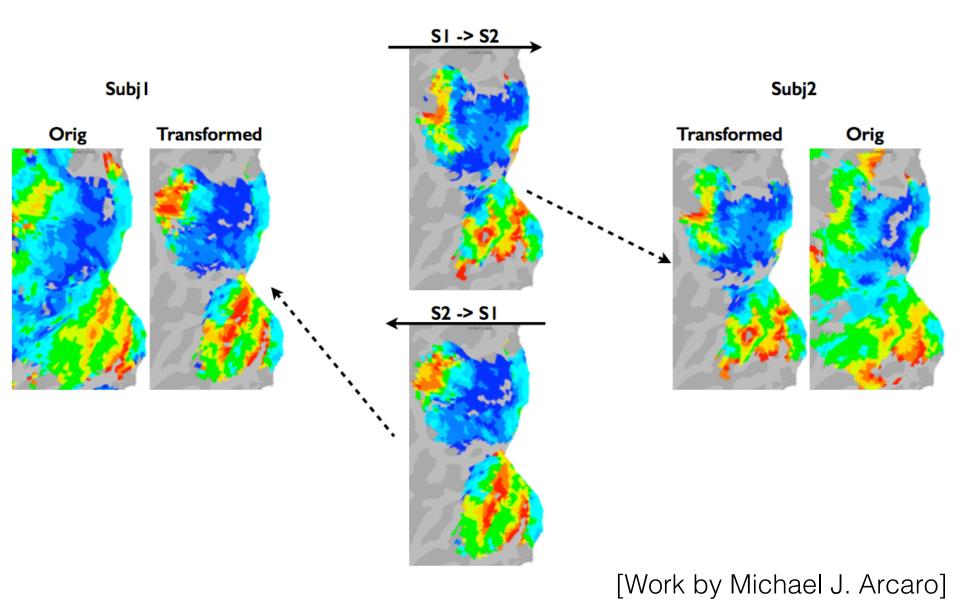


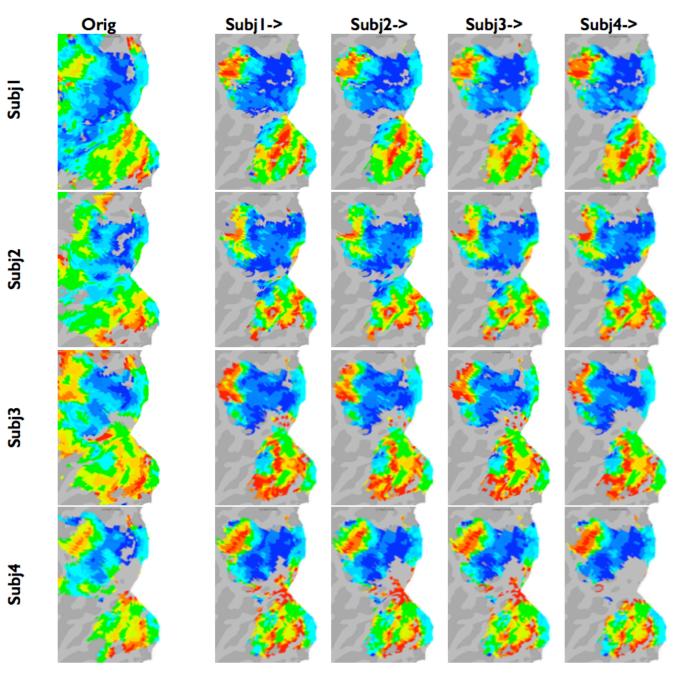
Orig



SRM

Transformation between subjects



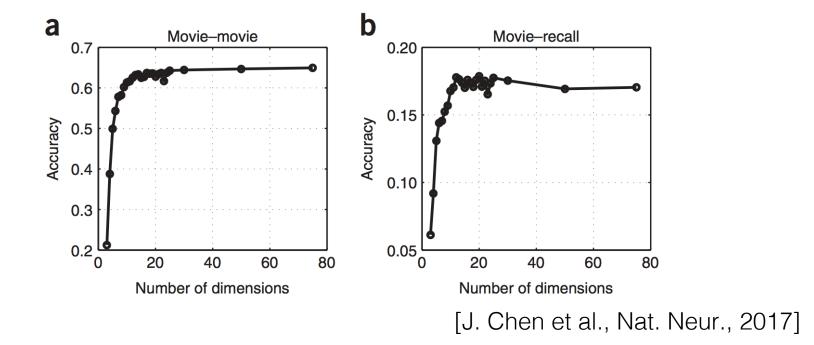


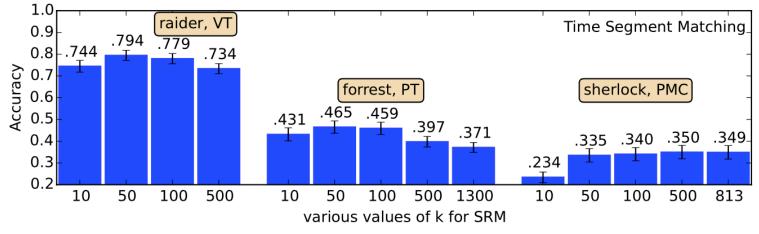
[Work by Michael J. Arcaro]

SRM on fMRI

- Generalize to new stimulus
- Generalize to new subject
- Decoupling shared and individual response
- SRM with non-temporally synchronized stimulus
- SRM with retinotopy
- Quantifying dimensionality of shared response
- Searchlight SRM

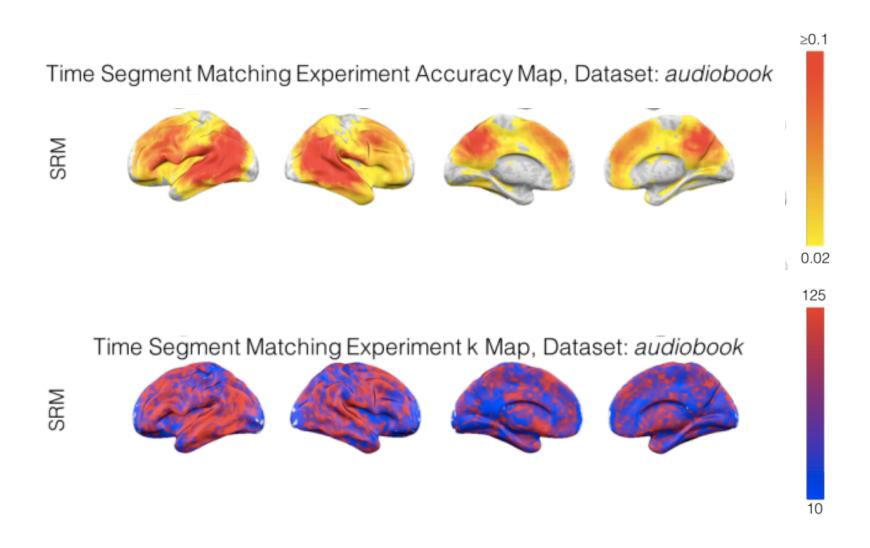
Quantifying dimensionality of shared response





[P.-H. Chen et al. NIPS, 2015]

Quantifying dimensionality of shared response

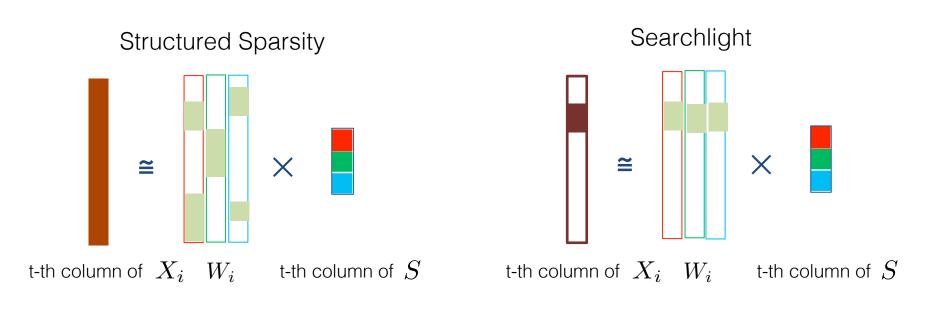


[H. Zhang et al. ArXiv, 2016]

SRM on fMRI

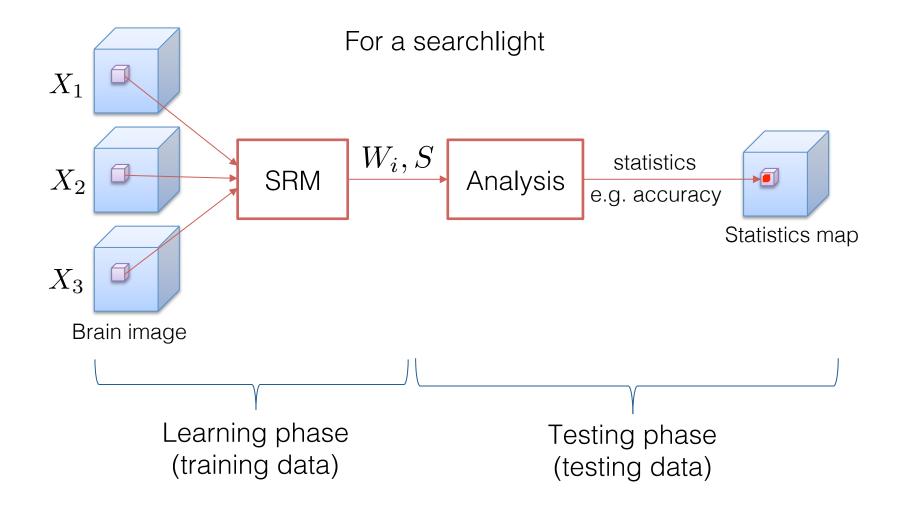
- Generalize to new stimulus
- Generalize to new subject
- Decoupling shared and individual response
- SRM with non-temporally synchronized stimulus
- SRM with retinotopy
- Quantifying dimensionality of shared response
- Searchlight SRM

Why searchlights?

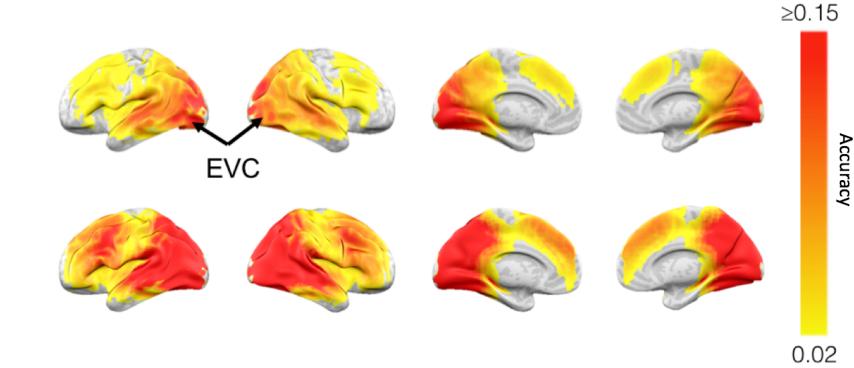


Searchlight SRM

• localized analysis across the whole brain



Time segment matching with searchlight SRM



Accuracy map from time segment matching experiment (Sherlock)

MNI

SRM

How can SRM help?

What can SRM do?

- Multi-subject data driven de-noising
- Aggregation of multi-subject data
- Generalizable to new subject and new stimulus
- Outperform within subject classification
- Decoupling of shared and individual response

Can I use SRM on my data?

- Temporally synchronized stimuli
 - No problem!
- Non-temporally synchronized stimuli
 - Can also work with preprocessing!

List of extensions

- SRM with word embedding
- Semi-supervised SRM
- Distributed SRM
- Convolutional Autoencoder SRM
- Spatial SRM
- Kernelized SRM
- Gaussian Process SRM
- Information theoretic SRM
- Matrix Normal SRM

Key Takeaways When should you consider using SRM?

- 1. I want to figure out what's shared/not shared in my multiset data (multi-subject, multi-modality, multi-region, etc)
- 2. I have multi-set data, I want better prediction accuracy!!

Hands-on SRM with Brainlak

Code ready to use on your dataset

https://github.com/IntelPNI/brainiak

- Simple setting, one line command to fit SRM on your data
- Handles different numbers of voxels across subjects/views

Jupyter notebook examples

Need jupyter notebook and brainiak properly installed with python 3

- 1. git clone https://github.com/cameronphchen/SRM_tutorial.git
- 2. cd SRM_tutorial
- 3. chmod +x download-data.sh
- 4. ./download-data.sh
- 5. jupyter notebook

Thank you!

{pohsuan,hejiaz}@princeton.edu cameronphchen.github.io