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Functional magnetic resonance
imaging (ftMRI) data
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Motivation

Modern tMRI studies of human brain use

data from multiple subjects
« scientific reason
« statistical reason
How can we aggregate tMRI| data from

multiple subjects?

Challenge

Inter-subject variability in anatomical
structure and functional topographies




Given data from training subjects,

Prediction:
can we predict the brain response of a test subject?

Classification:
given brain response from a test subject, can we
classify what'’s the stimulus”?




Learn subject specific functional topographies
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Data collected while subjects receiving stimuli

Temporally synchronized naturalistic stimuli
1. Sample a wide range of response from the subject

2. Use time as anchor for learning shared response
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fMRI response as linear combination of
functional topographies
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Learning what is shared across subjects
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fMRI data as linear combination of subject
specific functional topographies
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A generative mode|




A generative mode|
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A generative model
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Shared Response Model (SRM) is a latent
variable model
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« Feature identification with dimensionality reduction
« (Constrained EM algorithm



Shared features, subject specific functional
topographies, and subject specific response

voxel space

X, X1
X, X,
fMRI subject shared

specific
data response response

feature space

Eg|x[S]

& distribution

subject specific
functional
topographies

shared features




Evaluation with various datasets

« Different MRI machines

« Different institutes

« Different subjects

« Different preprocessing protocols
 Different brain regions

« Different data size
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Generalization to new subject
with time segment matching

Dataset
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Generalization to new subject
with time segment matching

Learning Subject Specific Bases
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Generalization to new subject
with time segment matching
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Generalization to new subject and distinct
stimulus with image classification
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Generalization to new subject and distinct
stimulus with image classification

| Imagé Stimulus Classification
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« Qutperforms within-subject classification



Classifying mental states

40 subijects listening to narrated story
Separate 40 subjects into 2 groups

Two groups receive different prior contexts
Leading to different interpretations of the story
Predict prior context of a left-out subject
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Classifying mental states

Group 1 Group 2 Giroup
prediction
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Classifying mental states

Group 1 Group 2 Group
prediction
shared within . .. shared within . .. accuracy
by all group individual by all group individual with SRM
0.72+0.06
0.54+0.06
0.70+0.04

0.82+0.04




Conclusion

« SRM achieves state-of-the-art performance using
multi-subject data, demonstrates higher sensitivity

« SRM outperforms within subject classification

« Low dimensional representation of brain response

« SRM decouples shared and individual responses,
allowing detection of group specific responses

Recent Extensions:

« Kernel version of SRM to unlock information in higher
order statistics from fMRI data

 Information theoretic based SRM
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