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Motivation !
Modern fMRI studies of human brain use 
data from multiple subjects !
•  scientific reason!
•  statistical reason!

How can we aggregate fMRI data from 
multiple subjects?!

Challenge !
Inter-subject variability in anatomical 
structure and functional topographies !



!
Prediction:!
can we predict the brain response of a test subject? !
!
Classification: !
given brain response from a test subject, can we 
classify what’s the stimulus? !

Given data from training subjects, !



Learn subject specific functional topographies !

Subject 1!

Subject 2!

voxel space! shared feature space !



Temporally synchronized naturalistic stimuli!
1. Sample a wide range of response from the subject !
2. Use time as anchor for learning shared response !
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Data collected while subjects receiving stimuli !
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fMRI data as linear combination of subject 
specific functional topographies!
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A generative model !

feature space !
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•  Feature identification with dimensionality reduction !
•  Constrained EM algorithm!

shared elicited response at time t ! observations of subject i at time t !
functional topographies for subject i! noise level for subject i’s data !

Shared Response Model (SRM) is a latent 
variable model!
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Shared features, subject specific functional 
topographies, and subject specific response!
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Evaluation with various datasets!

sherlock ! forrest! audiobook!raider !

•  Different MRI machines !
•  Different institutes !
•  Different subjects!
•  Different preprocessing protocols!
•  Different brain regions!
•  Different data size!



Generalization to new subject !
with time segment matching !
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Learning Subject Specific Bases!
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Generalization to new subject and distinct 
stimulus with image classification !
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Generalization to new subject and distinct 
stimulus with image classification !

•  Outperforms within-subject classification !



Classifying mental states !

•  40 subjects listening to narrated story !
•  Separate 40 subjects into 2 groups !
•  Two groups receive different prior contexts !
•  Leading to different interpretations of the story !
•  Predict prior context of a left-out subject !

audiobook!
Dataset$
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Conclusion !

•  SRM achieves state-of-the-art performance using 
multi-subject data, demonstrates higher sensitivity!

•  SRM outperforms within subject classification!
•  Low dimensional representation of brain response!
•  SRM decouples shared and individual responses, 

allowing detection of group specific responses !
!

Recent Extensions: !
•  Kernel version of SRM to unlock information in higher 

order statistics from fMRI data !
•  Information theoretic based SRM !
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