
Introduction!
Motivation:!
•  Modern fMRI studies of human cognition use data from 

multiple subjects.!
•  Why? Scientific reasons, and to increase the power of 

multivariate statistical analysis.!
!

Challenge : !
•  Inter-subject variability in anatomical structure and 

functional topographies.!
•  So how can we aggregate multi-subject fMRI data?!
Evaluation :!
•  Form this as a machine learning question.!
•  Given test subject’s fMRI response, can we successfully 

classify the stimulus using other subjects’ data.!
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A Reduced-Dimension fMRI Shared Response Model!

Approach: generative probabilistic model!
•  apply existing statistical tools!
•  natural incorporation of prior knowledge!

•  Closed-form constrained EM algorithm derived.!
•  Feature identification with dimensionality reduction.!

Differentiating two cognitive states : Subjects listen to 
identical story but different prior context leads to different 
interpretations.!
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Shared Response Model (SRM)!
What are we looking for?!
•  dimensionality reduction!
•  better identify the feature space!

Constrained EM algorithm!

SRM and spatial smoothing! Differentiating between groups!
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Learning Subject Specific Bases!

Robustness: Consistent across groups, high correlation 
between groups, better than anatomical alignment, 
comparable to 6mm spatial smoothing. !

raider!

•  movie and images watching!
•  10 subjects!
•  2203 TRs!
•  1000 voxels!
•  Ventral Temporal Cortex!

forrest!

•  auditory feature film !
     listening!
•  18 subjects!
•  3599 TRs!
•  2600 voxels!
•  Planum Temporale !

audiobook!

•  audiobook listening!
•  40 subjects!
•  449 TRs!
•  5000 voxels!
•  Default Mode Network!

Datasets!

Time segment matching  and Image classification !
Generalization to new subject and new stimulus:!
1.  Given a segment of movie watching response from a test 

subject, predict the time point of the segment while using 
other subjects’ data for training. !

2.  Given an image watching response from a test subject, 
predict the image category while using other subjects’ 
data for training.!

sherlock !

•  movie watching!
•  16 subjects!
•  1976 TRs!
•  813 voxels!
•  Posterior Medial Cortex!

E-step : !

M-step : !

•  Identify correlated response between independent groups.!
•  Increased correlation without dimensionality reduction.!

•  State-of-the-art performance in time segment matching 
and image prediction, suggesting identifying informative 
shared response. !

•  Outperforms within subject prediction.!

•  Identification of shared and individual responses.!
•  Ability to detect group specific responses opens up wide 

range of situations where group differences are the key 
experimental variable.!
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