

A Reduced-Dimension fMRI Shared Response Model

Po-Hsuan (Cameron) Chen¹, Janice Chen², Yaara Yeshurun², Uri Hasson², James V. Haxby³, Peter J. Ramadge¹ ¹Department of Electrical Engineering, Princeton University, ² Princeton Neuroscience Institute and Department of Psychology, Princeton University, ³Center for Cognitive Neuroscience, Dartmouth College email : pohsuan@princeton.edu

Introduction

Motivation:

- Modern fMRI studies of human cognition use data from multiple subjects.
- Why? Scientific reasons, and to increase the power of multivariate statistical analysis.

Challenge :

- Inter-subject variability in anatomical structure and functional topographies.
- So how can we aggregate multi-subject fMRI data?

Evaluation :

- Form this as a machine learning question.
- Given test subject's fMRI response, can we successfully classify the stimulus using other subjects' data.

Factor Model shared features subject specific

fMRI data functional topographies

Shared Response Model (SRM)

What are we looking for?

- apply existing statistical tools • dimensionality reduction

 $s_t \sim \mathcal{N}(0, \Sigma_s)$ $W_i^T W_i = I$

- Closed-form constrained EM algorithm derived. • Feature identification with dimensionality reduction.

E-step: M-step: $\mu_i^{\text{new}} = \frac{1}{d} \sum_t x_{it}$

- Approach: generative probabilistic model
- better identify the feature space
 natural incorporation of prior knowledge
 - $x_{it}|s_t \sim \mathcal{N}(W_i s_t + \mu_i, \rho_i^2 I)$ W_i not square

 $\mathbb{E}_{\mathbf{s}|x}[\mathbf{s}_t] = (W\Sigma_s)^T (W\Sigma_s W^T + \Psi)^{-1} (x_t - \mu)$ $\mathbb{E}_{\mathbf{s}|x}[\mathbf{s}_t \mathbf{s}_t^T] = \operatorname{Var}_{\mathbf{s}|x}[\mathbf{s}_t] + \mathbb{E}_{\mathbf{s}|x}[\mathbf{s}_t] \mathbb{E}_{\mathbf{s}|x}[\mathbf{s}_t]^T$ $= \Sigma_s - \Sigma_s^T W^T (W \Sigma_s W^T + \Psi)^{-1} W \Sigma_s + \mathbb{E}_{\mathbf{s}|x} [\mathbf{s}_t] \mathbb{E}_{\mathbf{s}|x} [\mathbf{s}_t]^T$

 $W_i^{\text{new}} = A_i (A_i^T A_i)^{-1/2}, \quad A_i = \frac{1}{2} \left(\sum_t (x_{it} - \mu_i^{\text{new}}) \mathbb{E}_{\mathbf{s}|x}[\mathbf{s}_t]^T \right)$ $\rho_i^{2\text{new}} = \frac{1}{dv} \sum_t \left(\|x_{it} - \mu_i^{\text{new}}\|^2 - 2(x_{ix} - \mu_i^{\text{new}})^T W_t^{\text{new}} \mathbb{E}_{\mathbf{s}|x}[\mathbf{s}_t] + \text{tr}(\mathbb{E}_{\mathbf{s}|x}[\mathbf{s}_t\mathbf{s}_t^T]) \right)$ $\Sigma_s^{\text{new}} = \frac{1}{d} \sum_t (\mathbb{E}_{\mathbf{s}|x}[\mathbf{s}_t \mathbf{s}_t^T])$

- Datasets <u>sherlock</u> movie watching 16 subjects 1976 TRs 813 voxels Posterior Medial Corte forrest Forrest auditory feature film Gump listening • 18 subjects 3599 TRs 2600 voxels Planum Temporale SRM and spatial smoothing Robustness: Consistent across groups, high correlation between groups, better than anatomical alignment, comparable to 6mm spatial smoothing. earning Subject Specific Bases 0 8 ROI: PM $\downarrow W_1 \quad W_m \downarrow$ || learn $\downarrow W_1 \quad W_m \downarrow$ Group I shared Group 2 shared Group 2 shared Computing Correlation between Groups subject ... subjec $\downarrow W_1 Q^T \qquad \downarrow W_m Q^T \qquad \downarrow W_1 \qquad W_m \checkmark$ Group I shared R Group 2 shared Identify correlated response between independent groups. • Increased correlation without dimensionality reduction. Time segment matching and Image classification Generalization to new subject and new stimulus: Given a segment of movie watching response from a test subject, predict the time point of the segment while using other subjects' data for training.
- 2. Given an image watching response from a test subject, predict the image category while using other subjects' data for training.

audiobook

- audiobook listening
- 40 subjects
- 449 TRs
- 5000 voxels
- Default Mode Network

<u>raider</u>

- movie and images watching
- 10 subjects
- 2203 TRs
- 1000 voxels
- Ventral Temporal Cortex

- shared response.
- Outperforms within subject prediction.

- range of situations where group differences are the key experimental variable.